Technical Manual

Automated RCB culvert analysis, design and rating in accordance with the AASHTO LRFD Bridge Design Specifications, 8th Edition and AASHTO Standard Specifications for Bridge Design, 17th Edition

Developed By:

Foth Infrastructure & Environment, LLC

Table of Contents

1	Def	initions	1
2	Abb	previations	1
3	Intr	oduction	1
4	Uni	ts	2
5	Sig	n Convention	2
Ę	5.1	Slab and Floor	2
Ę	5.2	Walls	3
6	Sec	ction Properties	3
7	Cor	nponent Loads	3
7	7.1	Dead Load of Structural Components (DC)	3
7	7.2	Dead Load of Wearing Surfaces (DW)	4
7	7.3	Vertical Pressure from Dead Load of Earth Fill (EV)	4
7	7.4	Horizontal Earth Pressure Load (EH)	5
7	7.5	Water Load (WA)	5
7	7.6	Live Load Surcharge (LS)	5
7	7.7	Vehicular Live Load (LL)	6
7	7.8	Vehicular Dynamic Load Allowance (IM)	10
8	Des	sign Load Cases	
8 9			13
	Des	sign Load Cases	13 14
9 10	Des	sign Load Cases	13 14 15
9 10	Des F	sign Load Cases sign Load Combinations RCB Culvert Design	13 14 15 15
9 10 ,	Des F 10.1	sign Load Cases sign Load Combinations CB Culvert Design General	13 14 15 15 22
9 10	Des F 10.1 10.2	sign Load Cases sign Load Combinations CB Culvert Design General Slab and Floor Design	
9 10	Des F 10.1 10.2 10.3	sign Load Cases sign Load Combinations CB Culvert Design General Slab and Floor Design Exterior Wall Design	
9 10	Des [0.1 [0.2 [0.3 [0.4 [0.5	sign Load Cases sign Load Combinations RCB Culvert Design General Slab and Floor Design Exterior Wall Design Interior Wall Design	13 14 15 15 22 27
9 10 , , , , , , , , , , , , , , , , , ,	Des [0.1 [0.2 [0.3 [0.4 [0.5	sign Load Cases sign Load Combinations RCB Culvert Design General Slab and Floor Design Exterior Wall Design Interior Wall Design Slab and Floor Shear Capacity	13 14 15 15 22 27
9 10	Des 10.1 10.2 10.3 10.4 10.5 R	sign Load Cases sign Load Combinations RCB Culvert Design General Slab and Floor Design Exterior Wall Design Interior Wall Design Slab and Floor Shear Capacity RCB Culvert Load Rating	
9 10	Des 10.1 10.2 10.3 10.4 10.5 F 11.1	sign Load Cases sign Load Combinations RCB Culvert Design General Slab and Floor Design Exterior Wall Design Interior Wall Design Slab and Floor Shear Capacity RCB Culvert Load Rating General	13 14 15 15 22 27 31 32 33 33 33
9 10	Des 10.1 10.2 10.3 10.4 10.5 F 11.1 11.2	sign Load Cases sign Load Combinations CB Culvert Design General Slab and Floor Design Exterior Wall Design Interior Wall Design Slab and Floor Shear Capacity CB Culvert Load Rating Slab and Floor Load Rating	13 14 15 15 22 27 31 32 33 33 33 33
9 10	Des 10.1 10.2 10.3 10.4 10.5 11.1 11.2 11.3	sign Load Cases sign Load Combinations RCB Culvert Design General Slab and Floor Design Exterior Wall Design Interior Wall Design Slab and Floor Shear Capacity RCB Culvert Load Rating General Slab and Floor Load Rating Exterior Wall Rating	13 14 15 15 22 27 31 32 33 33 33 33

11.7 Metr	c Input Units	37
Appendix A	Input Field Default, Minimum, and Maximum Values	39

1 Definitions

Slab - The top horizontal member of the culvert

Floor - The bottom horizontal member of the culvert

Integral Wearing Surface – The sacrificial thickness on the top surface of the slab (intended for situations where the top surface of the slab serves as the roadway surface)

Mud Mat - The sacrificial thickness on the bottom surface of the floor

2 Abbreviations

AASHTO - American Association of State Highway and Transportation Officials

Iowa DOT – Iowa Department of Transportation

LFR – Load Factor Rating

- LRFD Load and Resistance Factor Design
- LRFR Load and Resistance Factor Rating

BSB – Bridges and Structures Bureau

MCFT – Modified Compression Field Theory

RCB – Reinforced Concrete Box

LRFD Specifications – AASHTO LRFD Bridge Design Specifications, 5th Edition with Interims through 2010 (unless noted otherwise)

Standard Specifications – AASHTO Standard Specifications for Highway Bridges, 17th Edition – 2002

MBE – AASHTO Manual for Bridge Evaluation, 2nd Edition – 2011 with Interims through 2013

3 Introduction

CulvertCalc was developed for the lowa DOT to automate the analysis, design and rating of RCB culverts. The Microsoft Windows-based program was originally developed to design RCB culverts according to the *LRFD Specifications* and Iowa DOT policies. A subsequent revision added a rating feature conforming to the *AASHTO Manual for Bridge Evaluation*, 2nd Edition with Interims through 2013 to CulvertCalc. Intended users for the program are professional engineers and technicians with a working knowledge of the *LRFD Specifications* and RCB culvert design.

CulvertCalc will analyze, design and rate single, twin and triple barrel RCB culverts with userspecified cell span and height dimensions. Various input screens allow the user to select and/or adjust a variety of variables used in the analysis, design and rating of a culvert such as live load properties, fill properties, load factors and material properties. By default, these variables are set to conform to the Iowa DOT policies used to design the RCB Culvert Standards. These default settings allow the user to analyze and design a standard culvert with a minimal amount of input. A customizable truck library allows the user to create custom trucks and save the library for future use.

When in design mode, CulvertCalc will automatically design a RCB culvert and provide a tabular output of the required member thicknesses and various reinforcing properties as well as shortand long-format design reports. CulvertCalc will also check a design for compliance to applicable code provisions using member thicknesses and reinforcing properties entered by the user and provide an on-screen summary of non-compliant components, as well as short- and long-format reports that can be printed or saved for documentation purposes. Lastly, CulvertCalc will load rate a design with no additional user input. The governing rating factors are displayed on-screen and with additional details of the rating calculations provided in shortand long-format rating reports.

When in rating mode, the Reinforcing input screen is used to enter the size and spacing for the reinforcing at critical locations. The user then has the option to either perform a load rating by the LRFR method according to *the LRFD Specifications* or a load rating by the LFR method according to the *Standard Specifications*. In order to be consistent with older design standards, horizontal and vertical earth pressures for a load rating by the LFR method can either be calculated according to the *Standard Specifications* or according to the lowa DOT "Office Loading". Refer to the Sections 7.3 and 7.4 for definition of the lowa DOT "Office Loading".

4 Units

The internal units used by the CulvertCalc are:

- Length Inch
- Force Kip

5 Sign Convention

A sign convention is necessary to interpret the direction of section forces presented in the CulvertCalc output. In general, the x-axis is aligned with the centerline of the floor and is considered positive in the right hand direction. The y-axis is aligned with the centerline of the left exterior wall and is considered positive in the upward direction. Section forces for each element in the RCB culvert are provided at the tenth points along the length of the element.

5.1 Slab and Floor

Section numbers increase from left to right along the length of the member. Positive moments induce tension stress on the bottom face of the member. Positive shear forces act up on the left side of section and down on the right side of section. Tensile axial forces are considered as positive forces. The directions of positive internal forces are shown in Figure 5.1-1.

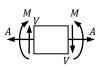
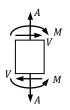



Figure 5.1-1 Sign Convention for Positive Internal Forces in Slab and Floor

5.2 Walls

Section numbers increase from top to bottom along the length of the member. Positive moments induce tension stress on the left face of the member. Positive shear forces act right on the top side of section and left on the bottom side of section. Tensile axial forces are considered as positive forces. The directions of positive internal forces are shown in Figure 5.2-1.

Figure 5.2-1 Sign Convention for Positive Internal Forces in Walls

6 Section Properties

All structural analysis and capacity calculations are based on a 12 in. long barrel section. For the slab, the structural section thickness is taken as the overall slab thickness minus the integral wearing surface thickness. For the floor, the structural section thickness is taken as the overall floor thickness minus the mud mat thickness. For both the interior and exterior walls, the structural section thickness is the respective overall wall thickness. Stick elements for the structural analysis process are established at the mid-thickness of the structural section. The cross-sectional area and moment of inertia of each member is calculated using the structural section thickness and the 12 in. strip width.

7 Component Loads

7.1 Dead Load of Structural Components (DC)

Self-weight of the slab is modeled as a transverse distributed load acting in the negative y-direction along the full length of the slab element(s). Magnitude of the distributed load is the product of the overall slab thickness, 12 in., and the user-specified structural concrete unit weight.

Self-weight of the walls is modeled as an axial distributed load acting in the negative y-direction along the full length of each wall element. Magnitude of the distributed load is the product of the respective wall thickness, 12 in., and the user-specified structural concrete unit weight.

Self-weight of the floor is directly resisted by the soil and not included in the analysis. The floor however resists an assumed uniform soil pressure due to the self-weight of the slab, walls, haunch, and frost trough. The magnitude of the soil pressure is the product of the cross-sectional area of the culvert above the top of the floor, 12 in., and the user-specified structural concrete unit weight divided by the overall width of the floor. This distributed transverse load acts along the full length of the floor element(s) in the positive y-direction.

7.2 Dead Load of Wearing Surfaces (DW)

Self-weight of the pavement is modeled as a surcharge load. Magnitude of the surcharge load is the product of the pavement thickness, 12 in., and the user-specified pavement unit weight. This surcharge load is applied to the full length of the slab element(s) as a distributed transverse load acting in the negative y-direction.

The surcharge load induces a horizontal soil pressure on the exterior walls. Magnitude of the soil pressure is the product of the surcharge load and the at-rest lateral earth pressure coefficient. The at-rest lateral earth pressure coefficient is calculated per *LRFD Specifications* Eq. 3.11.5.2-1 using the user-specified angle of internal friction of the soil. The soil pressure is applied as a transverse distributed load along the length of the exterior wall elements acting in the positive x-direction for the left wall and the negative x-direction for the right wall.

The floor resists an assumed uniform soil pressure due to the surcharge load acting on the slab. The soil pressure magnitude is the product of the distributed surcharge load and the overall slab width divided by the overall floor width. This distributed transverse load is applied to the full length of the floor element(s) acting in the positive y-direction.

Self-weight of the pavement is neglected for a load rating by the LFR method. Instead, the pavement is considered as fill and included in the horizontal and vertical earth pressure calculations.

7.3 Vertical Pressure from Dead Load of Earth Fill (EV)

Vertical earth pressure acting on the slab is modeled as a uniform transverse distributed load acting along the full length of the slab element(s). Magnitude of the distributed load is the product of the fill depth less the pavement thickness, 12 in., user-specified soil unit weight, and the soil-structure interaction factor. For a load rating by the LFR method, the pavement thickness is neglected and the full fill depth is used to calculate the vertical earth pressure magnitude. Also, for a load rating by the LFR method, the soil unit weight is set within CulvertCalc as 0.120 kips per cubic foot (kcf) for a load rating using *Standard Specification* loading and as 0.140 kcf for a load rating using the lowa DOT "Office Loading".

For an embankment installation condition, the soil-structure interaction factor is calculated per *LRFD Specifications* Eq. 12.11.2.2.1-1 for a design and a load rating by the LRFR method. For a load rating by the LFR method, the soil-interaction factor is calculated per *Standard Specifications* Eq. 16-17 for a load rating using *Standard Specifications* loading and is taken as 1.0 for a load rating using the lowa DOT "Office Loading". The upper limit for the calculated soil-structure interaction factor is based on the user-specified backfill compaction condition per *LRFD Specifications* Art. 12.11.2.2 and *Standard Specifications* Art. 16.6.4.2.1.

For a trench installation condition, the user-specified soil-structure interaction factor is used in the distributed load calculation for a design, a load rating by the LRFR method and a load rating by the LFR method using *Standard Specifications* loading. For a load rating by the LFR method using the lowa DOT "Office Loading", the soil-structure interaction factor is taken as 1.0.

The floor resists an assumed uniform soil pressure due to the vertical earth pressure acting on the slab. The soil pressure magnitude is the product of the distributed load acting on the slab and the overall slab width divided by the overall floor width. This distributed transverse load is applied to the full length of the floor element(s) acting in the positive y-direction.

7.4 Horizontal Earth Pressure Load (EH)

Horizontal earth pressure acting on the exterior walls is modeled as a linearly varying transverse distributed load. The linearly varying distributed load acts in the positive x-direction for the left exterior wall and the negative x-direction for the right exterior wall.

For a design and a load rating by the LRFR method, the distributed load magnitude at the top of the exterior wall elements is the product of the vertical distance from the bottom of the pavement to the mid-depth of the slab structural depth, 12 in., user-specified soil unit weight, and the at-rest lateral earth pressure coefficient. The at-rest lateral earth pressure coefficient is calculated per *LRFD Specifications* Eq. 3.11.5.2-1 using the user-specified angle of internal friction of the soil. At the bottom of the exterior wall elements, the distributed load magnitude is the product of the vertical distance from the bottom of the pavement to the mid-depth of the floor structural depth, 12 in., user-specified soil unit weight, and the at-rest lateral earth pressure coefficient.

For a load rating by the LFR method, the distributed load magnitude at the top of the exterior wall elements is the product of the vertical distance from the pavement surface to the mid-depth of the slab structural depth, 12 in., 0.120 kcf and an earth pressure coefficient. For a load rating using *Standard Specification* loading, the earth pressure coefficient is 0.5. For a load rating using the lowa DOT "Office Loading", the earth pressure coefficient is 0.3. At the bottom of the exterior wall elements, the distributed load magnitude is the product of the vertical distance from the pavement surface to the mid-depth of the floor structural depth, 12 in., 0.120 kcf and the earth pressure coefficient.

7.5 Water Load (WA)

Horizontal pressure due to water within the culvert is modeled as a linearly varying transverse distributed load applied to the exterior walls. Limits of the distributed load on the exterior walls are the horizontal projection of the underside of the slab and the horizontal projection of the top of floor. Magnitude of the distributed load near top of the wall is the product of the user-specified vertical distance between the water surface and the bottom of the slab, 12 in., and the user-specified water unit weight. Magnitude of the distributed load near the bottom of the slab increased by the cell height and frost trough depth, 12 in., and the user-specified water unit weight. The linearly varying distributed load acts in the negative x-direction for the left exterior wall and the positive x-direction for the right exterior wall. Water load is neglected for load ratings by both the LRFR and LFR methods.

7.6 Live Load Surcharge (LS)

Horizontal pressure due to live load surcharge is modeled as a uniform transverse distributed load applied to the exterior walls. The uniform distributed load acts in the positive x-direction for the left exterior wall and the negative x-direction for the right exterior wall.

For a design and a load rating by the LRFR method, an equivalent height of soil is interpolated from *LRFD Specifications* Table 3.11.6.4-1 with the "Abutment Height" taken as the distance from the pavement surface to the bottom of the floor. The magnitude of the distributed load is then calculated per *LRFD Specifications* Eq. 3.11.6.4.1 and is the product of the equivalent height of soil, 12 in., the user-specified soil unit weight, and the at-rest lateral earth pressure coefficient. The at-rest lateral earth pressure coefficient is calculated per *LRFD Specifications* Eq. 3.11.5.2-1 using the user-specified angle of internal friction of the soil.

For a load rating using *Standard Specification* loading, the uniform distributed load acting on the walls is taken as 0.120 kips per square foot based on 2 ft. of additional fill per *Standard Specifications* Art. 3.20.3. For a load rating by the LFR method using the lowa DOT "Office Loading", the uniform distributed load acting on the walls is taken as 0.036 kips per square foot as directed by the lowa DOT.

7.7 Vehicular Live Load (LL)

Axle loads for live load vehicles are distributed differently depending on the fill depth and userspecified options. In general, axle loads are either modeled as concentrated transverse loads or distributed transverse loads. When the fill depth is 2.0 ft. or greater, axle loads will always be modeled as distributed transverse loads. For fill depths less than 2.0 ft., axle loads will be modeled as concentrated transverse loads unless the *Distribute Axle Loads Parallel to Span for Fill Heights < 2 ft* checkbox in the *Live Load* screen (Figure 7.7-1) is checked by the user, in which case the axle loads will then be modeled as distributed transverse loads.

esign Vehicles	Live Load Distribution Options	Dynamic Load Allowance
HL93 Truck	Fill Interaction Factor Enter Fill Interaction Factor	✓ Include Dynamic Load Allowance
HL93 Tandem HS20 Truck	1.15	Max. Percentage of Live Load
HS20 Alternate Military	Distribution Pattern for Soil Pressure on Floor	33
SU4 Truck	Rigid Body	Neglect for Fill Depths Greater Than (ft)
SU6 Truck	AASHTO Code for Live Load Distribution	8
SU8 Truck	LRFD 8th Edition	Live Load Options
Type 4 🔹	Tire Patch Length (in) Tire Patch Width (in)	Live Load Step Distance (Max.) (in)
Load Library	10 20	12
Add Truck	✓ Neglect Live Load as Permitted by Code	Account for Disappearing Axle Effect
Edit Truck	 Merge Overlapping Distributed Axle Loads Distribute Axle Loads Parallel to Span for Fill Heights < 2 ft 	Include HL93 Lane Load Account for Variable Axle Spacing
Delete Truck	Live Load Surcharge	Axle Spacing Increment (ft)
Save Library	Use Constant Equivalent Height of Soil	4
	Equivalent Height of Soil (ft)	
	2	

Figure 7.7-1 Live Load Screen

To model axle loads as concentrated transverse loads, an equivalent distribution length perpendicular to the span is first calculated per *LRFD Specifications* Eq. 4.6.2.10.2-1 for a design and a load rating by the LRFR method and *Standard Specifications* Art. 3.34.3.2 for a load rating by the LFR method. For both formulas, the clear span is taken as the cell width.

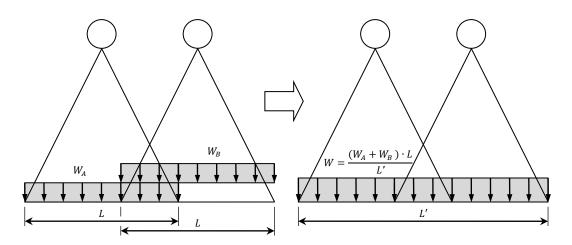
The magnitude of the concentrated transverse load for each axle is then the product of the axle load, the single lane multiple presence factor, and 12 in. divided by the equivalent distribution length perpendicular to the span. The single lane multiple presence factor is specified in *LRFD Specifications* Table 3.6.1.1.2-1, *MBE* Table 6A.5.12.5-1 and *Standard Specifications* Art. 3.12.1.

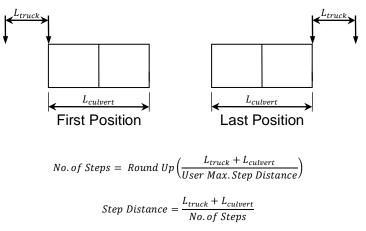
When axle loads are modeled as distributed transverse loads for fill heights less than 2.0 ft., a concentrated transverse load is first calculated as described in the previous paragraph. The equivalent distribution length parallel to the span is then calculated as the product of the fill depth and the fill interaction factor. For a design and a load rating by the LRFR method, the fill interaction factor is specified by the user. For a load rating by the LFR method, the fill interaction factor is set within CulvertCalc as 1.75 per *Standard Specifications* Art. 6.4.1. For a design and a load rating by the user specified tire contact patch length. The distributed transverse load magnitude for each axle is then taken as the quotient of the concentrated transverse load for that axle and the equivalent distribution length parallel to the span.

For fill depths 2.0 ft. or greater, axle loads are uniformly distributed over a rectangular area whose dimensions are defined by applicable specifications. For a design and a load rating by the LRFR method, the rectangular area dimensions are per *LRFD Specifications* Art. 3.6.1.2.6 using the user-specified tire contact patch length and width, and fill interaction factor. With the release of the 2013 Interims to the *LRFD Specifications*, a D_i factor was incorporated into the equations defining the rectangular area dimensions. The user can select whether or not to apply this factor in the *AASHTO Code for Live Load Distribution* combo box on the *Live Load* screen (Figure 7.7-1). For a load rating by the LFR method, the rectangular area dimensions are per *Standard Specifications* Art. 6.4.1.

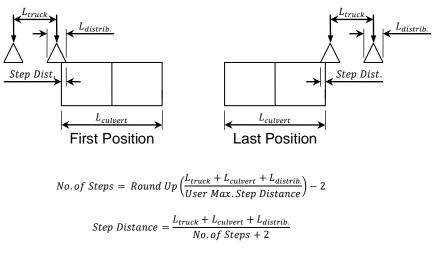
For a design and a load rating by the LFR method, distributed load magnitudes for one-, two-, and three-lanes loaded scenarios are calculated considering multiple presence factors from *Standard Specifications* Art. 3.12.1, and the scenario producing the greatest distributed pressure is used in the live load analysis. For a load rating by the LRFR method, distributed load magnitudes for a one-lane loaded scenario is used in the live load analysis per *MBE* Table 6A.5.12.5-1. The magnitude of the uniform distributed transverse load for each axle is taken as the distributed pressure acting on a 12 in. wide strip and limits of the uniform distributed transverse load are based on the width of the distributed pressure in the direction parallel to the span.

When the limits of distributed transverse loads from adjacent axles overlap, the individual overlapping distributed transverse loads will be combined into one single uniform distributed transverse load if the *Merge Overlapping Distributed Axle Loads* option is selected on the *Live Load* screen (Figure 7.7-1). Calculation of the combined uniform distributed transverse load is presented in Figure 7.7-2.




Figure 7.7-2 Merge Overlapping Distributed Axle Loads

Each live load vehicle is stepped across the RCB culvert from left to right in a series of successive positions to generate the live load section force envelopes. The maximum distance between successive positions is entered by the user in the *Live Load Step Distance (Max.)* textbox on the *Live Load* screen (Figure 7.7-1). Calculation of the actual distance between successive positions and the first and last vehicle positions are presented in Figure 7.7-3. The section force envelopes generated by stepping the vehicle left to right across the RCB culvert are mirrored about the vertical centerline of the RCB culvert to replicate stepping the vehicle from right to left. The maximum/minimum forces from the original and mirrored are then compared and the controlling forces are saved to the final live load envelope.


A number of standard design and rating vehicles are coded into CulvertCalc and cannot be modified by the user. The HL93 truck and tandem are defined in *LRFD Specifications* Art. 3.6.1.2. The HS20 truck and alternate military loading are defined *Standard Specifications* Art. 3.7.6 and 3.7.4, respectively. The SU4 – SU8 trucks are defined in *The Manual for Bridge Evaluation* Appendix D6A and are considered to be Legal vehicles for load rating. The Type 4, Type 3S3A, Type 3-3, Type 3S3B, Type 4S3 and Type 5-2 trucks are defined in Section 5.4 of the Iowa DOT *Bridge Rating Manual* and are considered to be Legal vehicles for load rating. The 90 kip 6-axle, 136 kip (A) 7-axle, 136 kip (B) 7-axle, 156 kip 8-axle, EV2 and EV3 trucks are defined in Section 5.4 of the Iowa DOT *Bridge Rating Manual* and axle spacings for these vehicles are presented in Figure 7.7-4. Additional vehicles may be defined by the user with the *Truck Editor* (Figure 7.7-5). For a design, the HL93 vehicles are used in Strength I load combinations and all other vehicles are used in Strength II load combinations. The HS20 vehicles are not applicable for a load rating by the LFR method.

The rear axle spacing for the HL93 and HS20 trucks and the front axle spacing for the SU8 truck can vary between minimum and maximum values. The variable axle spacings are modeled as a series of successive runs with the variable axle spacing increasing by a user-specified increment between successive runs. The maximum axle spacing is limited by the

overall width of the RCB culvert, measured between the centerlines of the exterior walls, since runs with axle spacings longer than these dimensions will not result in controlling maximum/minimum section forces.

Axle Loads Modeled as Concentrated Transverse Loads

Axle Loads Modeled as Distributed Transverse Loads

Figure 7.7-3 First and Last Live Load Positions

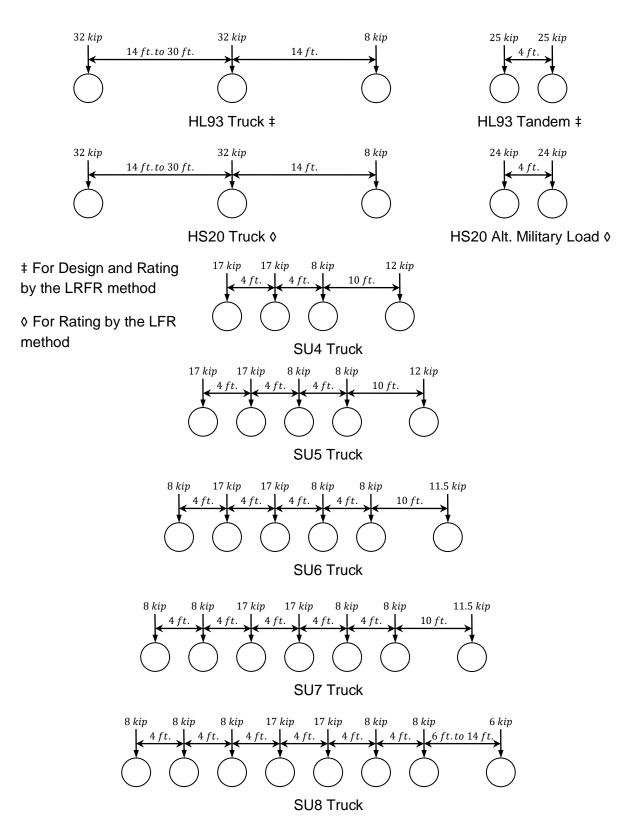
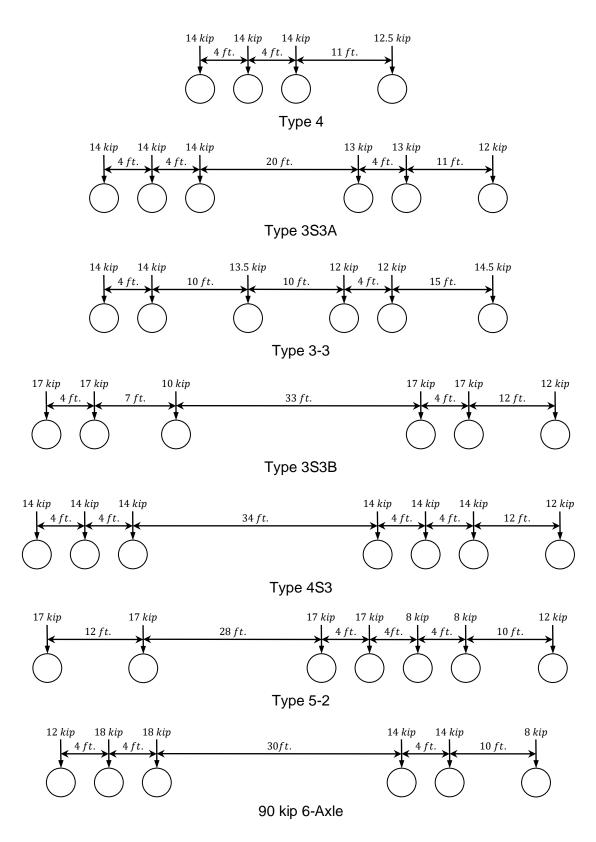
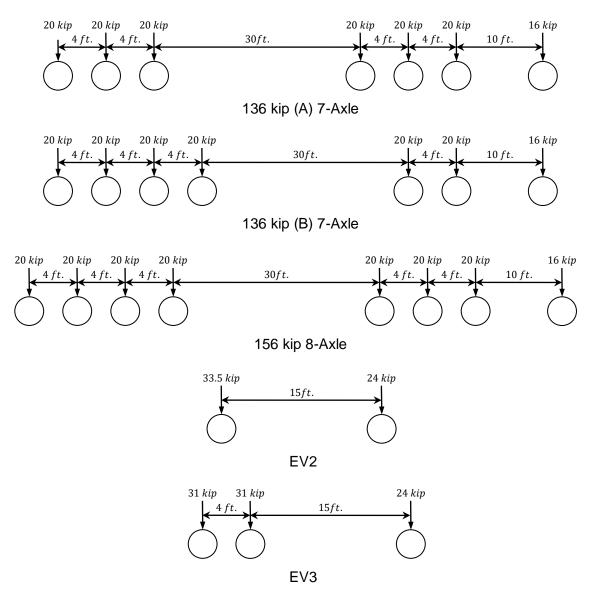
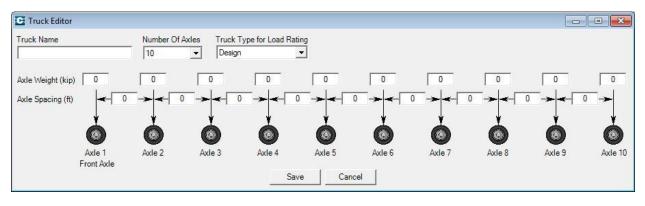
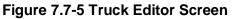
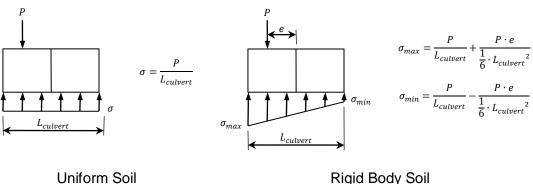



Figure 7.7-4 Internal Live Load Vehicles


Figure 7.7-4 Internal Live Load Vehicles (Cont.)

The HL93 lane load, as defined in *LRFD Specifications* Art. 3.6.1.2.4, is not typically included with the live load vehicles in RCB culvert design and rating. However, if so desired by the user, the HL93 lane load may be included in the analysis for design and load rating by the LRFR method by checking the *Include HL93 Lane Load* checkbox on the *Live Load* screen (Figure 7.7-1). The lane load is distributed perpendicular to the span using the fill interaction factor and is considered limitless in the direction parallel to the span. Pattern loading of the individual barrel spans for twin and triple barrel configurations is performed to maximize/minimize the section forces.

Soil pressure acting on the floor due to live load is modeled as either a uniform distributed transverse force or a linearly varying distributed transverse force (rigid body) based on the user selection in the Distribution *Pattern for Soil Pressure on Floor* combo box on the *Live Load* screen (Figure 7.7-1). Calculation of the two soil pressure distribution patterns is presented in Figure 7.7-6. For the rigid body soil distribution case, the supporting soil below the culvert is assumed to be in tension when the eccentricity (e) exceeds one-sixth of the culvert width (L_{culvert}).

Pressure Distribution

Pressure Distribution

Figure 7.7-6 Live Load Soil Pressure Distribution

7.8 Vehicular Dynamic Load Allowance (IM)

Dynamic live load allowance is accounted for as a percentage of the live load force effects. For a design and a load rating by the LRFR method, the IM percentage is dependent upon fill depth and user-specified input on the *Live Load* screen (Figure 7.7-1). The default settings for IM are based on *LRFD Specifications* Eq. 3.6.2.2-1 where the maximum IM percentage, which occurs when there is no fill over the RCB culvert, is 33% and the IM percentage lineally decreases to 0% when the fill depth is 8 ft. The IM percentage is only applied to vehicles; it is not applied to the HL93 lane load. For a load rating by the LFR method, IM percentage (referred to as "impact percentage" in the *Standard Specifications*) is determined per *Standard Specifications* Art. 3.8.2.3 for the specified fill depth.

8 Design Load Cases

Load cases are used in design to maximize force effects on various elements in the RCB culvert. The following three load cases are used by CulvertCalc:

- Case A Maximize Vertical Forces / Minimize Horizontal Forces
 In Case A, vertical forces are maximized by applying maximum load factors to DC, DW, and EV and including LL+IM. Inward acting horizontal forces are minimized by applying the 0.5 factor to EH as specified in AASHTO LRFD Art. 3.11.7, including WA and neglecting LS. The minimum load factor is applied to EH.
- Case B Minimize Vertical Forces / Maximize Horizontal Forces
 In Case B, horizontal forces are maximized by applying the maximum load factor to EH, including LS and neglecting WA. Vertical forces are minimized by applying minimum load factors to DC, DW, and EV and neglecting LL+IM.
- Case C Maximize Vertical Forces / Maximize Horizontal Forces In Case C, maximum load factors are applied to DC, DW, EV, and EH and only WA is neglected.

9 Design Load Combinations

Load combinations are assembled according to *LRFD Specifications* Table 3.4.1-1 to determine both Strength- and Service-level design forces. Default load factors used by these combinations adhere to *LRFD Specifications* Table 3.4.1-1 and *LRFD Specifications* Table 3.4.1-2. Default load modifiers used by these combinations adhere to Articles 1.3.3, 1.3.4, and 1.3.5. Load factors and load modifiers may be changed by the user on the *Load Factors, Load Modifiers and Exposure Factors* screen. The load combinations used by CulvertCalc are presented as follows:

- Strength I & Strength II
 - o Case A

 $Q = \eta_{DC(max.)} \cdot \gamma_{DC(max.)} \cdot DC + \eta_{DW(max.)} \cdot \gamma_{DW(max.)} \cdot DW + \eta_{EV(max.)} \cdot \gamma_{EV(max.)} \cdot EV + 0.5 \cdot \eta_{EH(min.)} \cdot \gamma_{EH(min.)} \cdot EH + \eta_{LL+IM} \cdot \gamma_{LL+IM} \cdot (LL + IM) + \eta_{WA} \cdot \gamma_{WA} \cdot WA + 0 \cdot LS$

o Case B

 $Q = \eta_{DC(min.)} \cdot \gamma_{DC(min.)} \cdot DC + \eta_{DW(min.)} \cdot \gamma_{DW(min.)} \cdot DW + \eta_{EV(min.)} \cdot \gamma_{EV(min.)} \cdot EV + \eta_{EH(max.)} \cdot \gamma_{EH(max.)} \cdot EH + 0 \cdot (LL + IM) + 0 \cdot WA + \eta_{LS} \cdot \gamma_{LS} \cdot LS$

• Case C

 $Q = \eta_{DC(max.)} \cdot \gamma_{DC(max.)} \cdot DC + \eta_{DW(max.)} \cdot \gamma_{DW(max.)} \cdot DW + \eta_{EV(max.)} \cdot \gamma_{EV(max.)} \cdot EV + \eta_{EH(max.)} \cdot \gamma_{EH(max.)} \cdot EH + \eta_{LL+IM} \cdot \gamma_{LL+IM} \cdot (LL + IM) + 0 \cdot WA + \eta_{LS} \cdot \gamma_{LS} \cdot LS$

Service I

 $\circ \quad \text{Case A} \\ Q = \gamma_{DC} \cdot DC + \gamma_{DW} \cdot DW + \gamma_{EV} \cdot EV + 0.5 \cdot \gamma_{EH} \cdot EH + \gamma_{LL+IM} \cdot (LL + IM) + \gamma_{WA} \cdot WA + 0 \cdot LS \\ \circ \quad \text{Case B} \\ Q = \gamma_{DC} \cdot DC + \gamma_{DW} \cdot DW + \gamma_{EV} \cdot EV + \gamma_{EH} \cdot EH + 0 \cdot (LL + IM) + 0 \cdot WA + \gamma_{LS} \cdot LS \\ \circ \quad \text{Case C} \\ Q = \gamma_{DC} \cdot DC + \gamma_{DW} \cdot DW + \gamma_{EV} \cdot EV + \gamma_{EH} \cdot EH + \gamma_{LL+IM} \cdot (LL + IM) + 0 \cdot WA + \gamma_{LS} \cdot LS \\ \end{cases}$

For the Strength I and Service I load combinations, the live load is taken as the section force envelope for the HL93 truck, HL93 tandem, and HL93 lane loads. For the Strength II load combination, the live load is taken as the section force for the SU8 truck and any user defined vehicles.

10 RCB Culvert Design

10.1 General

CulvertCalc begins the reinforced concrete design process once the section force envelopes are calculated for the Strength- and Service-level load combinations. As presented in Figure 10.1-1, the general design process is iterative starting with user-specified member thicknesses and increasing member thicknesses as needed to satisfy design requirements. A maximum member thickness limit is applied to prevent an infinite loop that may arise when design criteria require relatively thick walls and reinforcing limitations cannot satisfy minimum reinforcing requirements. The component loads and force distribution within the culvert are a function of the member thicknesses and thus the structural model must be solved at the start of each iteration. If multiple fill heights are specified by the user, the process presented in Figure 10.1-1 is repeated for each fill height.

Reinforcing patterns in the slab and floor follow the Iowa DOT RCB culvert standards. Descriptions of bar designations used by CulvertCalc are presented in Table 10-1 and Table 10-2.

The process of selecting a bar size and spacing combination for a particular element starts by determining the reinforcing area required to satisfy Strength requirements and if applicable, shrinkage and temperature requirements. CulvertCalc then selects the least-weight bar size and spacing combination that satisfies this required area of steel. Crack control provisions, per *LRFD Specifications* Art. 5.6.7, are then evaluated for this bar size and spacing combination. If crack control provisions are not satisfied, these provisions are evaluated for the next least-weight bar size and spacing combination. This process repeats until an acceptable bar size and spacing combination is reached or it is determined none of the available bar size and spacing combinations, at which point the member thickness is increased. Available bar size and spacing combinations in order of increased reinforcing area are presented in Table 10-3, Table 10-4, and Table 10-5. Bar spacings are set so bar patterns will always repeat in three feet intervals.

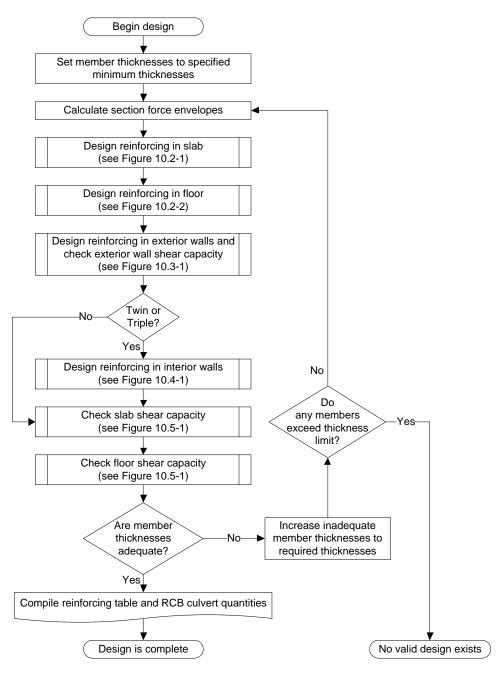


Figure 10.1-1 General Flowchart

Designation	Location
a1	Vertical bar on inside face of exterior walls.
b1	Longitudinal bar on both faces of exterior walls.
e1	Longitudinal bar in the bottom of the slab.
e2	Longitudinal bar in the top of the slab.
f1	Longitudinal bar in top of the floor.
f2	Longitudinal bar in bottom of the floor.
k1	Full width transverse bar in the bottom of the slab.
k2	Transverse corner bar extending from the outside face of the exterior wall to the top of the slab.
k9	Full width transverse bar in the top of the slab located at the barrel segment ends.
m1	Full width transverse bar in the top of the floor.
m2	Transverse corner bar extending from the outside face of the exterior wall to the bottom of the floor.
m9	Full width transverse bar in the bottom of the floor located at the barrel segment ends.

Table 10-1 Bar Designations for Single Barrel Configuration

Designation	Location
a1	Vertical bar on inside face of exterior walls.
a2	Vertical bar on both faces of interior walls.
b1	Longitudinal bar on both faces of exterior walls.
b2	Longitudinal bar on both faces of interior walls.
e1	Longitudinal bar in the bottom of the slab.
e2	Longitudinal bar in the top of the slab.
f1	Longitudinal bar in top of the floor.
f2	Longitudinal bar in bottom of the floor.
k1	Full width transverse bar in the bottom of the slab.
k2	Short transverse bar in the bottom of the slab that alternates with the k1 bars.
	Located in the exterior spans for the triple barrel configuration.
k3	Short transverse bar in the bottom of the slab that alternates with the k1 bars for
	the triple barrel configuration. Located in the interior span.
k4	Transverse corner bar extending from the outside face of the exterior wall to the
	top of the slab.
k6	Full width transverse bar in top of the slab for twin and triple barrel
	configurations.
k7	Short transverse bar in the top of the slab that alternates with the k6 bars for
	twin and triple barrel configurations. Located over the interior walls.
k9	Full width transverse bar in the top of the slab located at the barrel segment ends.
m1	Full width transverse bar in the top of the floor.
m2	Short transverse bar in the top of the floor that alternates with the m1 bars. Located in the exterior spans for the triple barrel configuration.
	Short transverse bar in the top of the slab that alternates with the m1 bars for
m3	the triple barrel configuration. Located in the interior span.
m4	Transverse corner bar extending from the outside face of the exterior wall to the bottom of the floor.
m6	Full width transverse bar in bottom of the floor for twin and triple barrel
IIIO	configurations.
m7	Short transverse bar in the bottom of the floor that alternates with the m6 bars
1117	for twin and triple barrel configurations. Located under the interior walls.
m9	Full width transverse bar in the bottom of the floor located at the barrel segment ends.

Table 10-2 Bar Designations for Twin and Triple Barrel Configurations

Bar Size	Spacing (in)	A _s per ft (in ²)
4	12	0.2000
4	9	0.2667
5	12	0.3100
4	6	0.4000
5	9	0.4133
6	12	0.4400
6	9	0.5867
7	12	0.6000
5	6	0.6200
8	12	0.7900
7	9	0.8000
6	6	0.8800
9	12	1.0000
8	9	1.0533
7	6	1.2000
9	9	1.3333
8	6	1.5800
9	6	2.0000
10	6	2.5400
11	6	3.1200

Table 10-3 Bar Size and Spacing Combinations for Non-Alternating Bars

Notes:

- 1. The above table excludes bars spaced 4.5 in. due to concerns related to the labor cost of placing closely spaced bars.
- 2. The lowa DOT generally prefers to not use #10 and #11 bars in RCB culverts, however the above table includes #10 and #11 bars spaced at 6 in. for situations where nonstandard fills and/or nonstandard geometry require the use of larger diameter bars.
- 3. Bar size and spacing combinations from the above table apply to the following bars:
 - a1, k1, k2, m1, and m2 for single cell RCB culverts
 - a1, a2, k4, and m4 for twin and triple cell RCB culverts

Bar A Size	Bar B Size	Spacing (in)	As per ft (in ²)
4	4	9	0.2667
4	5	9	0.3400
4	4	6	0.4000
5	5	9	0.4133
5	6	9	0.5000
4	5	6	0.5100
4	4	4.5	0.5333
6	6	9	0.5867
5	5	6	0.6200
4	5	4.5	0.6800
6	7	9	0.6933
5	6	6	0.7500
7	7	9	0.8000
5	5	4.5	0.8267
6	6	6	0.8800
7	8	9	0.9267
5	6	4.5	1.0000
6	7	6	1.0400
8	8	9	1.0533
6	6	4.5	1.1733
8	9	9	1.1933
7	7	6	1.2000
9	9	9	1.3333
6	7	4.5	1.3867
7	8	6	1.3900
8	8	6	1.5800
7	7	4.5	1.6000
8	9	6	1.7900
7	8	4.5	1.8533
9	9	6	2.0000
8	8	4.5	2.1067
8	9	4.5	2.3867
9	9	4.5	2.6667
9	10	4.5	3.0267
10	10	4.5	3.3867
10	11	4.5	3.7733
11	11	4.5	4.1600

Table 10-4 Bar Size and Spacing Combinations for Alternating Bars (One Size Maximum Difference)

Notes:

1. The above table limits the difference between alternating bars to one size or less.

- 2. The lowa DOT generally prefers to not use #10 and #11 bars in RCB culverts, however the above table lists combinations which include #10 and #11 bars for situations where nonstandard fills and/or nonstandard geometry require the use of larger diameter bars.
- 3. Bar size and spacing combinations from the above table apply to the following bars:
 - k1, k2, m1, and m2 for twin cell RCB culverts
 - k1, k2, k3, m1, m2, and m3 for triple cell RCB culverts

Table 10-5 Bar Size and Spacing Combinations for Alternating Bars (Three Sizes Maximum Difference)

Bar A Size	Bar B Size	Spacing (in)	As per ft (in ²)
4	4	9	0.2667
4	5	9	0.3400
4	4	6	0.4000
5	5	9	0.4133
4	6	9	0.4267
5	6	9	0.5000
4	5	6	0.5100
4	4	4.5	0.5333
4	7	9	0.5333
5	7	9	0.6067
5	5	6	0.6200
4	6	6	0.6400
4	5	4.5	0.6800
5	8	9	0.7333
5	6	6	0.7500
4	7	6	0.8000
5	5	4.5	0.8267
4	6	4.5	0.8533
5	7	6	0.9100
5	6	4.5	1.0000
4	7	4.5	1.0667
5	8	6	1.1000
5	7	4.5	1.2133
5	8	4.5	1.4667
6	8	4.5	1.6400
6	9	4.5	1.9200
7	10	4.5	2.4933
8	11	4.5	3.1333

Notes:

- 1. The above table limits the difference between alternating bars to three sizes or less.
- 2. Bar A was generally limited to a #4 or #5 however the two combinations at the bottom of the table utilize #6 bars to increase the available reinforcing area.

- 3. The lowa DOT generally prefers to not use #10 and #11 bars in RCB culverts however the above table lists combinations which include #10 and #11 bars for situations where nonstandard fills and/or nonstandard geometry require the use of larger diameter bars.
- 4. Bar size and spacing combinations from the above table apply to the k6, k7, m6, and m7 for twin and triple cell RCB culverts.

The Auto Design function assumes a bar diameter for initial flexural strength calculations. For the slab and floor, a #9 bar is assumed. For the walls, a #8 bar is assumed. These assumptions lead to a conservative design for typical conditions. For design conditions that produce relatively thick members with bar sizes that exceed the aforementioned sizes, the Auto Design function may produce a marginally inadequate design. In these situations, it is recommended the Design Check function be used to verify the design produced by the Auto Design function.

10.2 Slab and Floor Design

The slab design process and floor design process are presented in Figure 10.2-1 and Figure 10.2-2, respectively, and a review of these flowcharts will reveal the two processes are nearly identical. One slight variation between the two processes is the critical section location for the shear capacity check when the Vary Shear Critical Section Location in Slab with Fill Depth checkbox on the Analysis Options screen (Figure 10.2-3) is checked. When the fill depth is less than 2.0 ft., the shear critical section for the slab is taken at the end of the haunch based on the lowa DOT BSB office practice. For fill depths equal to and greater than 2.0 ft., the shear critical section for the slab is taken at a distance d_v from the end of the haunch per LRFD Specifications Art. C5.12.8.6.1. If the Vary Shear Critical Section Location in Slab with Fill Depth checkbox is not checked, the critical section location is taken at a distance dy from the end of the haunch for all fill depths. The shear critical section location for the floor is always taken at a distance d_v from the end of the haunch, regardless of fill depth. The flexural critical sections near the walls are located at the ends of the haunches if the Set Flexural Critical Section Location at End of Haunch checkbox on the Analysis Options screen (Figure 10.2-3) is checked. Otherwise, the flexural critical sections are located within the haunch per LRFD Specifications Art. C5.6.3.2.1. Midspan flexural critical sections are set at the 0.5 point for single cell culverts and for the interior cell of triple cell culverts. For twin cell culverts and for the exterior cells of triples cell culverts, the flexural critical section is set at the 0.4 point (0.0 point taken at the exterior wall).

The flexural reinforcing design process used for the slab and floor designs is presented in Figure 10.2-4. Within this process, a maximum reinforcing limit is set to ensure the section is classified as tension controlled as defined in *LRFD Specifications* Art. 5.6.2.1. This limit is set at 63.4% of the balanced reinforcing ratio. The flexural reinforcing design process also includes checks to ensure the reinforcing satisfies the shrinkage and temperature reinforcing provisions of *LRFD Specifications* Art. 5.10.6 for exposed surfaces, including the top of the slab for RCB culverts with no fill. Lastly, the flexural reinforcing design process includes checks to ensure the rack control provisions of *LRFD Specifications* Art. 5.6.7 are satisfied. Axial force in the slab and floor at Service-level loads will typically be compressive except for shallow fill situations, where a small tensile force may be present under the Case B load combination. Accounting for the compressive force will result in a lower stress in tensile reinforcing and thus a wider

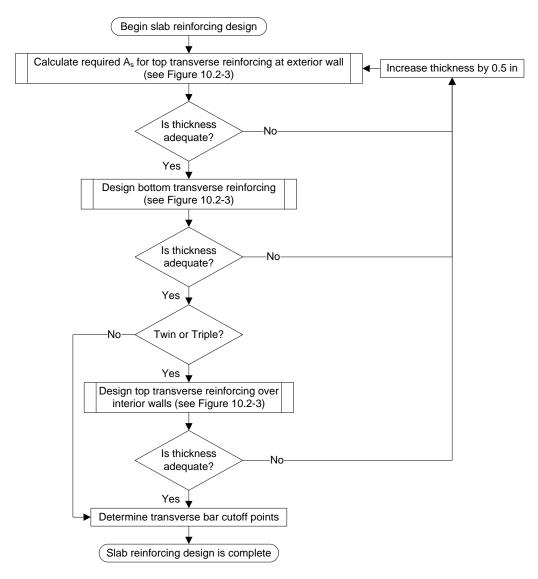


Figure 10.2-1 Slab Design Flowchart

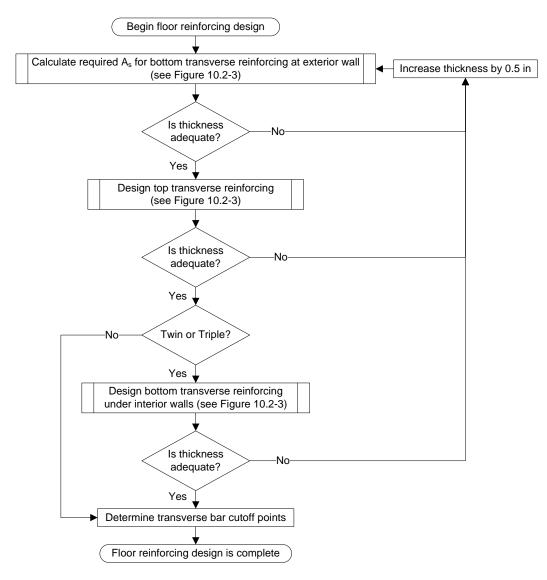


Figure 10.2-2 Floor Design Flowchart

Analysis Options	
Critical Section Location	1
Vary Shear Critical S	ection Location in Slab with Fill Depth
Set Flexural Critical S	Section Location at End of Haunch
Shear Capacity	
Calculation Method	
Simplified (Art. 5.7.3.4.1)	•
Reinforcing Service Lev	el Stress
Limit Service Level S	tress for Reinforcing Steel
Percent of Yield Stress	
60	
Load Rating	
✓ Neglect Axial Load in	Walls When Permitted by Code
Exclude Shear Capac	city from Load Rating
Analyze with Hinges	and the second
	Earth Pressure Specification
Load Rating Method	
LRFR	► AASHTO Standard Spec. ▼

Figure 10.2-3 Analysis Options Screen

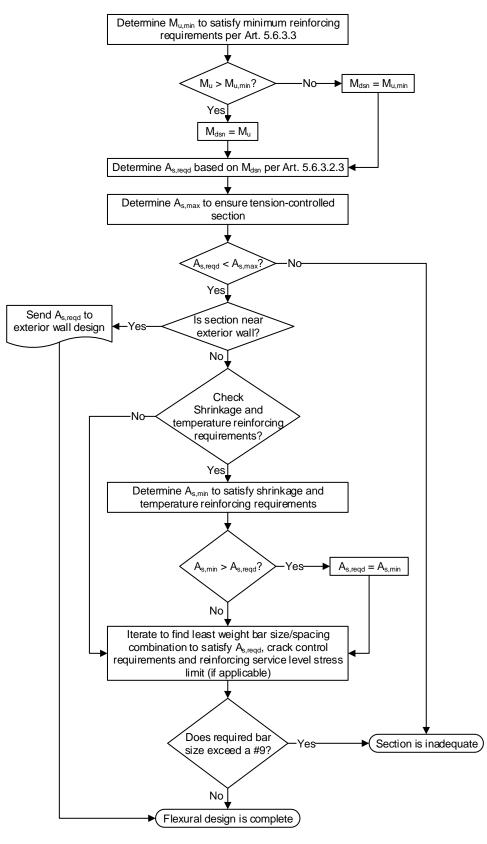


Figure 10.2-4 Flexural Design Flowchart

allowable bar spacing. When a compressive force is present, the Service-level steel stress is calculated per *LRFD Specifications* Eq. C12.11.4-1. Traditional allowable stress formulas are used to calculate the steel stress when a tensile force is present.

Length and bar end location for the k2, k3, m2, and m3 bars for the twin and triple barrel configurations are first determined based on the points where these bars are no longer required to resist flexural forces. The tensile capacity of the continuing reinforcing is then evaluated per *LRFD Specifications* Art. 5.7.3.5. If the tensile capacity is insufficient, the cutoff points are shifted towards the walls in increments equaling 2.5% of the cell span until the tensile capacity of the continuing reinforcing is adequate. The bar is then extended past the cutoff point per *LRFD Specifications* Art. 5.10.8.1.2a. Lastly, the length between the point of maximum moment and the bar end is checked to ensure adequate development length is provided per *LRFD Specifications* Art. 5.10.8.1.

The k6 and m6 bars are full width bars with a maximum spacing of 18 in. to satisfy the provisions *LRFD Specifications* Art. 5.10.3.2. To reduce the overall reinforcing weight, the size of the k6 and m6 bars is limited to a #5 or smaller.

The k7 and m7 bars will typically be larger than the k6 and m6 bars, respectively, and thus these bars cannot be terminated in a tension region per the provisions of *LRFD Specifications* Art. 5.10.8.1.2a. Therefore, length and bar end location for the k7 and m7 bars are determined by extending the bar beyond the inflection point location per *LRFD Specifications* Art. 5.10.8.1.2c. The length between the point of maximum moment and the bar end is then checked to ensure adequate development length is provided per *LRFD Specifications* Art. 5.10.8.1. In shallow fill situations, an inflection point will likely not exist in the slab and the k7 bar will be extended across the full width of the slab.

10.3 Exterior Wall Design

The exterior wall design process is presented in Figure 10.3-1. Three individual wall designs are calculated in order to determine the distribution of reinforcing between the outside and inside faces which results in the least-weight solution. For Design 1 the reinforcing is initially split equally between the outside and inside faces. For Design 2, 66.7% of the reinforcing is initially placed in the outside face and for Design 3, 75% of the reinforcing is initially placed in the outside face. At the end of each wall design the total weight of the vertical exterior wall reinforcing is calculated for a three foot barrel segment. The wall design that results in the least-weight is then selected for the final exterior wall design.

Within each wall design, the required size for the outside face reinforcing bars is determined for 6 in., 9 in., and 12 in. bar spacings. For each spacing, the total weight of the outside face bars is calculated for a three foot barrel segment. The spacing that results in the least-weight is then used for that particular wall design.

The flexural critical sections near the slab and floor are located at the ends of the haunches if the *Set Flexural Critical Section Location at End of Haunch* checkbox on the *Analysis Options* screen (Figure 10.2-3) is checked. Otherwise, the flexural critical sections are located within the haunch per *LRFD Specifications* Art. C5.6.3.2.1. The critical section for the mid-height wall

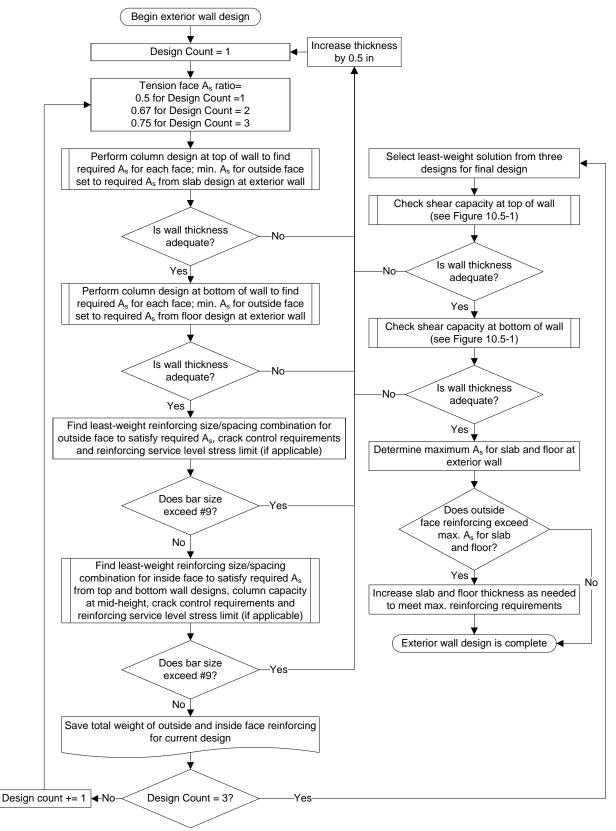


Figure 10.3-1 Exterior Wall Design Flowchart

design is assumed to occur at the 0.5 point. For the shear capacity checks, the critical section locations are set at a distance d_v beyond the end of the haunch per the provisions of *LRFD Specifications* Art. C5.12.8.6.1.

The column design process used for the exterior wall design is presented in Figure 10.3-2. A factored interaction diagram is calculated for the given wall section following the provisions of *LRFD Specifications* Art. 5.7.2. Tension-controlled and compression-controlled resistance factors are taken from *LRFD Specifications* Art. 5.5.4.2. Slenderness effects are assumed to have a negligible effect on the wall design and thus are not accounted for in the exterior wall.

The axial capacity of the section is first checked to ensure the maximum factored axial forces for each Strength-level load case are less than the maximum factored pure compression capacity calculated in accordance to *LRFD Specifications* Eq. 5.6.4.4-3. The minimum factored axial forces for each load case are also checked to ensure they exceed the pure tensile capacity of the provided reinforcing.

If the section has adequate axial capacity, the flexural capacity for the section is then evaluated. Since flexural capacity varies with axial load, two factored flexural capacities must be calculated for each Strength-level load case. One factored flexural capacity correlates with the minimum factored axial force from the section force envelope and the other correlates with the maximum factored axial force from the section force envelope. The two factored flexural capacities are compared to the maximum factored moment from the section force envelope. If the maximum factored moment is less than both factored flexural capacities, the section is considered adequate for that load case.

If the section is found to be inadequate, the reinforcing steel is increased and the section is reevaluated. The maximum allowable percentage of reinforcing steel is set at 4% per Iowa DOT BSB office policy. The member thickness is increased and reevaluated when the required reinforcing percentage exceeds 4%.

If the flexural capacity exceeds 110% of the factored moment for all load cases, the reinforcing will be reduced and the section reanalyzed. The initial reinforcing is set at the minimum required by *LRFD Specifications* Eq. 5.6.4.2-3 using the full section dimensions. In order to reduce the reinforcing below the limit set by *LRFD Specifications* Eq. 5.6.4.2-3, the section dimensions used for the column analysis must be reduced. The provisions of *LRFD Specifications* Eq. 5.6.4.2 require the minimum reinforcing on the reduced section satisfy the greater of *LRFD Specifications* Eq. 5.6.4.2-3 or 1%. For typical material strengths (4 ksi concrete and Grade 60 reinforcing) the initial reinforcing will be less than 1% of the gross section. Therefore, for the first section reduction, the reinforcing area will not change and the section dimensions will be set so the reinforcing area is 1% of the reduced section. For subsequent section reductions, the section area is reduced by 10% and the reinforcing area reduced to the minimum required by *LRFD Specifications* Art. 5.6.4.2. Absolute minimum reinforcing limits are set at 0.5% of the gross section per lowa DOT BSB office policy or an area that equates to a #4 spaced at 12 in. on either face.

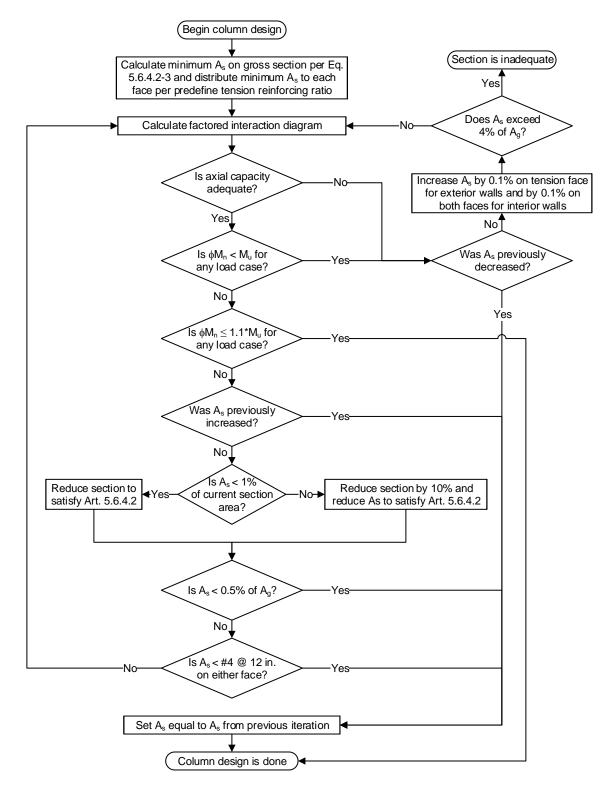
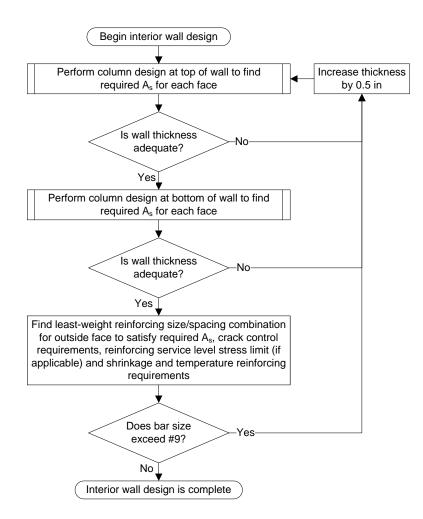



Figure 10.3-2 Column Design Flowchart

Once the section is found to have adequate flexural and axial capacity, the shear capacity at the top and bottom of the wall is evaluated. The process for calculating the factored shear capacity is presented in Figure 10.5-1. Lastly, since the exterior wall design can increase the area of reinforcing in the slab and floor near the exterior wall, the maximum allowable reinforcing area for the slab and floor is calculated and compared to the provided area. If necessary, the slab and/or floor thickness will be increased to ensure the flexural reinforcing necessary for the exterior wall design will not exceed the maximum allowable area for the slab and floor.

10.4 Interior Wall Design

The interior wall design process is presented in Figure 10.4-1. The same column design process, presented in Figure 10.3-2, used for the exterior wall design is also utilized for the interior wall design with one exception. For the interior wall, the reinforcing is always equally distributed to each face. This equal reinforcing distribution eliminates the need for the multiple designs and leads a design process that is less complex than the exterior wall design process. Additionally, since the interior walls are not subjected to any direct transverse loads, the factored shear force in the walls is insignificant and thus the shear capacity checks have been eliminated from the interior wall design process. Similar to the exterior wall, slenderness effects are assumed to have a negligible effect on the wall design and thus are not accounted for in the interior wall design.

10.5 Slab and Floor Shear Capacity

The process used to calculate the shear capacity of the slab and floor is presented in Figure 10.5-1. The shear capacity calculation method is selected by the user on the *Analysis Options* screen (Figure 10.2-3). By default, the simplified provisions of *LRFD Specifications* Art. 5.7.3.4.1 are utilized. Other options for the shear capacity calculation method include utilizing the MCFT provisions of *LRFD Specifications* Art. 5.7.3.4.2 or "Best Result". "Best Result" calculates the shear capacity per both the simplified and MCFT provisions and sets the member shear capacity equal to the larger value.

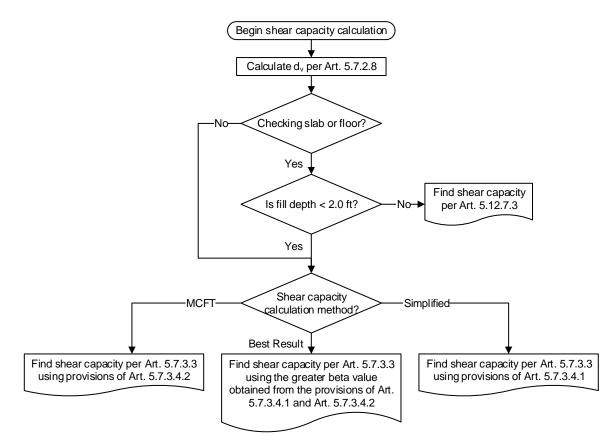


Figure 10.5-1 Shear Capacity Flowchart

11 RCB Culvert Load Rating

11.1 General

The load rating process for a RCB culvert involves the calculation of the component dead, earth and live loads and the calculation of member capacities at critical sections. Rating factors are then determined as the ratio of capacity less dead and earth forces to the live load forces. Calculation of the component dead, earth and live loads is addressed in Chapter 7. Calculation of the member capacities generally conform to either the *LRFD Specifications* or the *Standard Specifications* and will be described in detail in the following sections. Calculation of rating factors will be discussed near the end of this chapter followed by analysis and rating procedures for RCB culverts with no bottom corner reinforcing. A discussion on metric input units concludes this chapter.

11.2 Slab and Floor Load Rating

The slab and floor are load rated for both flexure and shear at various critical sections. Critical section locations are consistent with those used for design as described in Section 10.2. For a load rating by the LFR method, the *Standard Specification* provisions dictating the critical section locations are consistent with the *LRFD Specifications* except the shear critical sections are located using effective depth d instead of d_v .

Flexural capacity at a critical section in the slab and floor is calculated using an area of reinforcing determined from the bar size, spacing and percent effective information entered by the user on the *Reinforcing* screen (Figure 11.2-1). For a load rating by the LRFR method, the flexural capacity is calculated per *LRFD* Specifications Art. 5.6.3.2. For a load rating by the LFR method, flexural capacity is calculated per *Standard* Specifications Art.8.16.3.3.

e Spacing (in) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Flexure 100 100 100 100 100 100 100	ffective (%) Shear 100 100 100	Exterior Wall Outside Face - Top Corner Outside Face - Bottom Corner Inside Face - Mid-Height Interior Wall One Face	4 • 4 • 4 •	None 💌 None 💌	Spacing (in)
6 6 6 6 6 6 6	100 100 100 100 100	100 100 100	Outside Face - Bottom Corner Inside Face - Mid-Height Interior Wall One Face	4 ▼ 4 ▼ Bar 1 Size	None None Bar 2 Size	6 Spacing (in)
6 6 6 6	100 100 100 100	100	Inside Face - Mid-Height Interior Wall One Face	4 Bar 1 Size	None None Bar 2 Size	Spacing (in)
6	100 100 100	100	Inside Face - Mid-Height Interior Wall One Face	4 Bar 1 Size	None Bar 2 Size	Spacing (in)
6	100 100		Interior Wall	Bar 1 Size	Bar 2 Size	Spacing (in)
] 6	100	ffective (%)	One Face			
		ffective (%)]			
	Percent E	ffective (%)	Critical Section Locations		300	
	I GIGGIN L					
e Spacing (in)	Flexure	Shear				*
6	100	100				
6	100	100				
6	100	100				
6	100					+
6	100		U	Jpdate		
	- 6 - 6	6 100 6 100 6 100	6 100 100 6 100		6 100 100 6 100 100	6 100 100 6 100 100

Figure 11.2-1 Reinforcing Screen

Shear capacity at a critical section in the slab and floor is dependent upon fill depth, a userselection option and the reinforcing information entered by the user on the *Reinforcing* screen (Figure 11.2-1). For a load rating by the LRFR method, shear capacity is calculated according to the Shear Capacity Flowchart presented in Figure 10.5-1. For a load rating by the LFR method, the shear capacity is calculated per *Standard Specifications* Art. 8.16.6.2.1 when the fill depth is less than 2 ft. and per *Standard Specifications* Art. 8.16.6.7 when the fill depth is 2 ft. or greater.

11.3 Exterior Wall Rating

The exterior walls are load rated for flexural-axial interaction and for shear at the same critical section locations used for design as described in Section 10.3. For a load rating by the LFR method, the *Standard Specification* provisions dictating the critical section locations are consistent with the *LRFD Specifications* except the shear critical sections are located using effective depth d instead of d_v .

A flexural-axial interaction diagram is developed for each critical section using an area of reinforcing in each face determined from the bar size and spacing information entered by the user on the *Reinforcing* screen (Figure 11.2-1). If the reinforcing entered is less than the required minimum, the section dimensions used for the column analysis are reduced to where the reinforcing entered satisfies the required minimum. For a load rating by the LRFR method, minimum reinforcing requirements are per *LRFD Specifications* Art. 5.6.4.2. For a load rating by

the LFR method, minimum reinforcing requirements are per *Standard Specifications* Art. 8.18.1.2. Factored flexural and axial capacities are read from the flexural-axial interaction diagram following the procedure outlined in Appendix G6A of the *MBE*.

If the *Neglect Axial Load in Walls When Permitted by Code* checkbox on the *Analysis Options* screen (Figure 10.2-3) is checked, axial load will be neglected if less than threshold values provided in *LRFD Specifications* Art. 5.6.4.5 and *Standard Specifications* Art. 8.16.4.3. If the axial load can be neglected, the section will be rated for only flexural forces with flexural capacity determined as described in Section 11.2.

Shear capacity at critical sections in the exterior walls is determined according to the Shear Capacity Flowchart presented in Figure 10.5-1 for a load rating by the LRFR method. For a load rating by the LFR method, axial load is neglected and the shear capacity is calculated per *Standard Specifications* Art. 8.16.6.2.1.

11.4 Interior Wall Rating

The interior walls, if present, are rated for flexural-axial interaction at critical sections located near the top and bottom of the walls. Flexural and axial capacities are determined following the same procedures described for the exterior walls in Section 11.3. If the *Neglect Axial Load in Walls When Permitted by Code* checkbox on the *Analysis Options* screen (Figure 10.2-3) is checked, axial load will be neglected if less than threshold values and the section will be rated for only flexural forces. Shear forces on interior walls are negligible and therefore the interior walls are not rated for shear.

11.5 Rating Factors

At each critical section, rating factors are calculated for each rating vehicle from the component section forces present at the critical section and the member capacity at that location. Inventory and Operating rating factors are calculated for design loads (HL93 and HS20 vehicles). For non-design vehicles, live load factors used to calculate the rating factors are based on the vehicle type (Legal or Permit). For a given vehicle, once rating factors are calculated for all of the critical sections, the smallest rating factor is determined and reported as the governing factor for that vehicle. Rating factors less the 1.0 indicates the RCB culvert has insufficient capacity to support the rating vehicle at the related reliability level (either Inventory or Operating).

The rating factor equation for a load rating by the LRFR method is presented in *MBE* Eq. 6A.5.12.4-1. For a load rating by the LFR method, there is not a formal rating factor equation within the MBE and thus the rating philosophy of the LRFR equation is extended to a format consistent with the *Standard Specifications*. The Inventory and Operating rating factor equations for the LFR method are as follows:

$$RF_{Inv} = \frac{C \pm \gamma \cdot (\beta_{DC} \cdot DC \pm \beta_{EV} \cdot EV \pm \beta_{EH} \cdot EH)}{\gamma \cdot \{\beta_{LL+IM} \cdot (LL + IM) + \beta_{LL+IM} \cdot LS\}}$$
$$RF_{Opr} = \frac{C \pm \gamma \cdot (\beta_{DC} \cdot DC \pm \beta_{EV} \cdot EV \pm \beta_{EH} \cdot EH)}{\gamma \cdot \{(LL + IM) + LS\}}$$

Default values for the beta and gamma factors are taken from *Standard Specifications* Table 3.22.1A for Group X. The Operating rating factor equation is used to calculate the rating factor for Legal and Permit vehicles.

Minimum and maximum load factors used in the rating equation are entered in the Load Factors, Load Modifiers and Exposure Factors screen (Figure 11.5-1). For a load rating by the LRFR method, Strength I live load factors are used for the Design Inventory, Design Operating and Legal rating factors and Strength II live load factors are used for the Permit rating factors. A condition factor and system factor can also be entered if desired for a load rating by the LRFR method. The product of the condition factor and system factor is limited to a minimum of 0.85 within CulvertCalc to conform to *MBE* Art. 6A.5.12.4. At each critical section, minimum and maximum load factors are utilized in manner that will produce the smallest rating factor.

Strength I Load Factors -		Strength II Load Factors		Capacity Factors		amma Factor	
DC (Max.)	1.25	DC (Max.)	1.25	Condition Factor			1.3
DC (Min.)	0.9	DC (Min.)	0.9	System Factor	_	eta Factors	
DW (Max.)	1.5	DW (Max.)	1.5			C	1
DW (Min.)	0.65	DW (Min.)	0.65		L	L+IM / LS (Inv.)	1.67
EH (Max.)	1.35	EH (Max.)	1.35		L	_+IM / LS (Opr.)	1
EH (Min.)	1	EH (Min.)	1		E	v E	1
EV (Max.)	1.3	EV (Max.)	1.3		E	H (Max.)	1
EV (Min.)	0.9	EV (Min.)	0.9		E	H (Min.)	0.5
LL+IM / LS (Dsn. Inv.)	1.75	LL+IM / LS (Permit)	1.4				
LL+IM / LS (Dsn. Opr.)	1.35	-		-			
LL+IM / LS (Legal)	2						

Figure 11.5-1 Load Factors, Load Modifiers and Exposure Factors Screen

11.6 Rating RCB Culverts with No Bottom Corner Reinforcing

Older RCB culvert designs exist in the lowa DOT inventory where the bottom corner reinforcing is omitted, as shown in Figure 11.6-1. For these designs it is apparent the structural analysis model used for their design differed from the conventional model since there is no reinforcing provided to resist the large negative moments that exist in the bottom corners of the conventional model. It is assumed these RCB culverts were designed using a structural analysis model that included hinges at the bottom of the walls. These hinges prevent moment transfer between the walls and the floor but allow the transfer of shear and axial forces. The resulting moment diagram for typical loads on a RCB culvert is consistent with the reinforcing provided in the walls, slab and floor for these designs.

RCB culverts with no bottom corner bars may be accurately rated by CulvertCalc using the *Analyze with Hinges at Bottom of Walls* option in the *Input Forms* | *Analysis Options* screen. When selected, this option adds hinges at the bottom of the exterior and interior wall elements in the structural model. The presence of the hinges is easily seen by reviewing the section

forces shown in the *Long Load Rating Report* and noting the moment values reduce to zero at the bottom of the walls.

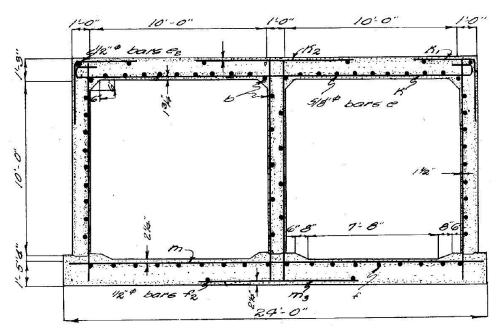


Figure 11.6-1 Typical Section for RCB Culvert with No Bottom Corner Bars

The rating process is modified when the *Analyze with Hinges at Bottoms of Walls* option is selected to account for differing force effects at the critical sections. The modifications are as follows:

- Flexural rating for the floor near the exterior walls is eliminated because the moments are relatively small at this location
- Shear rating for the floor near the exterior walls calculates shear capacity for only the top reinforcing in tension since there is no bottom reinforcing at this location
- Combined flexure and axial force rating at the bottom of the exterior walls is eliminated because the moments are relatively small and the axial force is not significantly greater than the axial force at the top of the wall
- Shear rating at the bottom of the exterior walls calculates shear capacity only for the inside reinforcing in tension since there is no reinforcing on the outside face

11.7 Metric Input Units

For existing RCB culverts designed and detailed in metric units, the user can utilize the *Metric Units* option in the *Mode | Rating* menu to enter the RCB culvert geometry and material properties in metric units. All metric dimensions are entered in millimeter (mm) units and are converted internally by CulvertCalc to equivalent English units. The conversion factor used for all dimensions is 25.4 mm = 1 in. Unit weights for concrete, soil and pavement are entered in kilogram per cubic meter (kg/m³) units and are converted internally by CulvertCalc to English units using the conversion factor 16,000 kg/m³ = 1 kip per cubic foot (kcf).

Concrete compressive strength and reinforcing yield strength are selected from combo boxes in megapascal (MPa) units. The selected strengths are converted internally by CulvertCalc to English units as shown in Table 11-1.

For metric units, "hard" metric reinforcing bars are available in the combo boxes on the *Reinforcing* input screen. It is understood RCB culverts designed and detailed in metric units were actually constructed using standard English reinforcing bars. Therefore, the "hard" metric bars are converted to standard English bars internally by CulvertCalc as shown in Table 11-2. The standard English reinforcing bar diameters and areas are used by CulvertCalc in determining flexural, shear and axial capacities for the various critical sections in the RCB culvert.

Reinforcing Y	/ield Strength	Concrete Compr	essive Strength
Metric Units (Mpa)	English Units (Ksi)	Metric Units (Mpa)	English Units (Ksi)
250	36	17	2.5
275	40	20	3.0
345	50	24	3.5
400	60	28	4.0
		31	4.5
		35	5.0
		38	5.5
		41	6.0
		48	7.0
		52	7.5

Table 11-1 Material Strengths Conversion

Table 11-2 Reinforcing Conversion

Metric Bar Size	English Bar Size
10M	4
15M	5
20M	6
25M	8
30M	10
35M	11

The "Input Data Echo" section of the short and long rating reports displays the metric dimensions, material strengths and reinforcing bar sizes entered by the user as well as the equivalent dimension, strength and size in English units that is used for the internal rating calculations performed by CulvertCalc. The remainders of the rating reports are in English units.

		Input Field	Units	Default Value	Min. Value	Max. Value
		Cell Span	ft.	3	3	26
		Cell Height	ft.	3	3	20
		Barrel Length	ft.	38	5	99
		Min. Slab Thickness	in.	8	8	36
		Min. Ext. Wall Thickness	in.	9	8	36
ţτγ	s)	Min. Int. Wall Thickness	in.	9	8	36
Culvert Geometry	(English Units)	Min. Floor Thickness	in.	10	8	40
9 Ge		Max. Slab, Floor and Wall Thickness	in.	36	12	48
/ert	ngli	Haunch Length/Width	in.	6	0	12
Cul	(E	Frost Trough Height	in.	4	0	12
		Width of Constant Depth Portion of Frost Trough	in.	4	0	6
		Width of Tapered Portion of Frost Trough	in.	6	0	6
		Floor Extension Beyond Outside Face of Exterior Wall	in.	3	0	9
		Integral Wearing Surface Thickness	in.	0	0	3
		Mud Mat Thickness	in.	2	0	3
		Cell Span	mm	914	900	8000
		Cell Height	mm	914	900	6000
		Slab Thickness	mm	200	200	900
	Metric Units)	Ext. Wall Thickness	mm	225	200	900
ţτγ		Int. Wall Thickness	mm	225	200	900
me		Floor Thickness	mm	250	200	1000
ē		Haunch Length/Width	mm	150	0	300
Culvert Geometry		Frost Trough Height	mm	100	0	300
Cul	1)	Width of Constant Depth Portion of Frost Trough	mm	100	0	150
		Width of Tapered Portion of Frost Trough	mm	150	0	150
		Floor Extension Beyond Outside Face of Exterior Wall	mm	75	0	230
		Integral Wearing Surface Thickness	mm	0	0	75
		Mud Mat Thickness	mm	50	0	75
		Fill Height	ft.	0	0	100
s	(English Units)	Min. Fill Height	ft.	0	0	99
ertie		Max. Fill Height	ft.	55	1	100
Fill Properties		Fill Height Increment	ft.	2	0.25	5
ili P		Soil-Structure Interaction Factor		1	0	5
"		Water Height Above Bottom of Slab	ft.	0	0	100
		Pavement Thickness	in.	10	0	24
Fill Properties	(Metric Units)	Fill Height	mm	0	0	30000
		Soil-Structure Interaction Factor		1	0	5
Fill	Ψ.	Pavement Thickness	mm	250	0	600

Appendix A Input Field Default, Minimum, and Maximum Values

(Table continued on next page)

		Input Field	Units	Default Value	Min. Value	Max. Value
beo I avi		Enter Fill Interaction Factor		0	0	5
		Tire Patch Length	in.	10	0	50
		Tire Patch Width	in.	20	0	50
	гоа	Equivalent Height of Soil	ft.	2	0	10
	IVe	Max. Percentage of Live Load	%	33	0	100
-	-	Neglect for Fill Depths Greater Than	ft.	8	0.1	100
		Live Load Step Distance (Max.)	in.	24	1	30
		Axle Spacing Increment	ft.	4	1	8
		Concrete Unit Weight	kcf	0.15	0	1
	s)	Concrete Compressive Strength	ksi	4	1	20
ials	(English Units)	Concrete Max. Aggregate Size	in.	0.75	0.25	2
Materials	sh l	Soil Unit Weight	kcf	0.12	0	1
Ξ	ngli	Effective Friction Angle	deg	30	0	89
	E	Water Unit Weight	kcf	0.0624	0	1
		Pavement Unit Weight	kcf	0.15	0	1
		Concrete Unit Weight	kg/m3	2400	0	10000
s	(Metric Units)	Concrete Compressive Strength	MPa	28	17	52
Materials		Reinforcing Steel Yield Strength	MPa	400	250	400
/at		Soil Unit Weight	kg/m3	1920	0	10000
2		Effective Friction Angle	deg	30	0	89
		Pavement Unit Weight	kg/m3	2400	0	10000
<i>.</i>		Edge Clearance - Typical	in.	2	1	4
Din	s)	Edge Clearance - Top of Slab	in.	2	1	4
ver	Units)	Edge Clearance - Top of Floor	in.	2.25	1	4
Ö	(English L	Edge Clearance - Bottom of Floor	in.	3.5	1	4
Concrete Cover Dim.		End Clearance - Vertical Bar - Top	in.	2	1	4
ouc		End Clearance - Vertical Bar - Bottom (Min.)	in.	3	1	4
0		End Clearance - Transverse Bar	in.	2	1	4
- -	Units)	Edge Clearance - Typical	mm	50	25	100
Din		Edge Clearance - Top of Slab	mm	50	25	100
ver		Edge Clearance - Top of Floor	mm	60	25	100
Concrete Cover Dim.		Edge Clearance - Bottom of Floor	mm	90	25	100
	Met	End Clearance - Vertical Bar - Top	mm	50	25	100
	=	End Clearance - Vertical Bar - Bottom (Min.)	mm	75	25	100
		End Clearance - Transverse Bar	mm	50	25	100

(Table continued on next page)

	Input Field	Units	Default Value	Min. Value	Max. Value
	Strength I - Load Factor - DC (Max.)		1.25	0	10
	Strength I - Load Factor - DC (Min.)		0.9	0	10
	Strength I - Load Factor - DW (Max.)		1.5	0	10
	Strength I - Load Factor - DW (Min.)		0.65	0	10
	Strength I - Load Factor - EH (Max.)		1.35	0	10
	Strength I - Load Factor - EH (Min.)		1	0	10
	Strength I - Load Factor - EV (Max.)		1.3	0	10
	Strength I - Load Factor - EV (Min.)		0.9	0	10
	Strength I - Load Factor - LL + IM		1.75	0	10
	Strength I - Load Factor - LS		1.75	0	10
	Strength I - Load Factor - WA		1	0	10
e	Strength I - Load Modifier - DC (Max.)		1	0	10
Nod	Strength I - Load Modifier - DC (Min.)		1	0	10
gn ľ	Strength I - Load Modifier - DW (Max.)		1	0	10
Load Factors, Load Modifiers and Exposure Factors - Design Mode	Strength I - Load Modifier - DW (Min.)		1	0	
rs - I				0	10
actor	Strength I - Load Modifier - EH (Max.)		1.05		10
re Fa	Strength I - Load Modifier - EH (Min.)		1	0	10
Inso	Strength I - Load Modifier - EV (Max.)		1.05	0	10
Exp	Strength I - Load Modifier - EV (Min.)		1	0	10
and	Strength I - Load Modifier - LL + IM		1	0	10
ers	Strength I - Load Modifier - LS		1	0	10
odifi	Strength I - Load Modifier - WA		1	0	10
Ň	Strength II - Load Factor - DC (Max.)		1.25	0	10
Loac	Strength II - Load Factor - DC (Min.)		0.9	0	10
ors, l	Strength II - Load Factor - DW (Max.)		1.5	0	10
acto	Strength II - Load Factor - DW (Min.)		0.65	0	10
ad F	Strength II - Load Factor - EH (Max.) Strength II - Load Factor - EH (Min.)		1.35 1	0	10
Γœ	Strength II - Load Factor - EV (Max.)		1.3	0	10 10
	Strength II - Load Factor - EV (Max.)		0.9	0	10
	Strength II - Load Factor - LL + IM		1.35	0	10
	Strength II - Load Factor - LS		1.35	0	10
	Strength II - Load Factor - WA		1	0	10
	Strength II - Load Modifier - DC (Max.)		1	0	10
	Strength II - Load Modifier - DC (Min.)		1	0	10
	Strength II - Load Modifier - DW (Max.)		1	0	10
	Strength II - Load Modifier - DW (Min.)		1	0	10
	Strength II - Load Modifier - EH (Max.)		1.05	0	10
	Strength II - Load Modifier - EH (Min.)		1	0	10
	Strength II - Load Modifier - EV (Max.)		1.05	0	10
	Strength II - Load Modifier - EV (Min.)		1	0	10

(Table continued on next page)

	Input Field	Units	Default Value	Min. Value	Max. Value
	Strength II - Load Modifier - LL + IM		1	0	10
	Strength II - Load Modifier - LS		1	0	10
	Strength II - Load Modifier - WA		1	0	10
	Service I - Load Factor - DC		1	0	10
	Service I - Load Factor - DW		1	0	10
	Service I - Load Factor - EH		1	0	10
	Service I - Load Factor - EV		1	0	10
	Service I - Load Factor - LL + IM		1	0	10
	Service I - Load Factor - LS		1	0	10
	Service I - Load Factor - WA		1	0	10
	Service I - Exposure Factor - Slab		1	0.1	1
	Service I - Exposure Factor - Walls		1	0.1	1
ode	Service I - Exposure Factor - Floor		1	0.1	1
Σ	LRFR - Strength I - Load Factor - DC (Max.)		1.25	0	10
ating	LRFR - Strength I - Load Factor - DC (Min.)		0.9	0	10
- Ra	LRFR - Strength I - Load Factor - DW (Max.)		1.5	0	10
Load Factors, Load Modifiers and Exposure Factors - Rating Mode	LRFR - Strength I - Load Factor - DW (Min.)		0.65	0	10
Fact	LRFR - Strength I - Load Factor - EH (Max.)		1.35	0	10
l arr	LRFR - Strength I - Load Factor - EH (Min.)		1	0	10
Isod	LRFR - Strength I - Load Factor - EV (Max.)		1.3	0	10
Ex	LRFR - Strength I - Load Factor - EV (Min.)		0.9	0	10
and	LRFR - Strength I - Load Factor - LL + IM / LS (Dsn. Inv.)		1.75	0.1	10
iers	LRFR - Strength I - Load Factor - LL + IM / LS (Dsn. Opr.)		1.35	0.1	10
odifi	LRFR - Strength I - Load Factor - LL + IM / LS (Legal)		2	0.1	10
Σ	LRFR - Strength II - Load Factor - DC (Max.)		1.25	0	10
oac	LRFR - Strength II - Load Factor - DC (Min.)		0.9	0	10
rs, I	LRFR - Strength II - Load Factor - DW (Max.)		1.5	0	10
acto	LRFR - Strength II - Load Factor - DW (Min.)		0.65	0	10
dF	LRFR - Strength II - Load Factor - EH (Max.)		1.35	0	10
Гоа	LRFR - Strength II - Load Factor - EH (Min.)		1	0	10
	LRFR - Strength II - Load Factor - EV (Max.)		1.3	0	10
	LRFR - Strength II - Load Factor - EV (Min.)		0.9	0	10
	LRFR - Strength II - Load Factor - LL + IM / LS (Permit)		1.4	0.1	10
	LRFR - Capacity Factor - Condition Factor		1	0.85	1
	LRFR - Capacity Factor - Service Factor		1	0.85	1
	LFR - Gamma Factor - Group X		1.3	0.1	10
	LFR - Beta Factors - DC		1	0	10
	LFR - Beta Factors - LL + IM / LS (Inv.)		1.67	0.1	10
	LFR - Beta Factors - LL + IM / LS (Opr.)		1	0.1	10
	LFR - Beta Factors - EV		1	0	10
	LFR - Beta Factors - EH (Max.)		1	0	10
	LFR - Beta Factors - EH (Min.)		0.5	0	10